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Nonminimum-Phase Optimum-Amplitude Bandpass
Waveguide Filters

ALI E. ATIA, meEumBER, 1EEE, AND ALBERT E. WILLIAMS, MEMBER, IEEE

Abstract—The synthesis of narrow-bandpass waveguide filters
having flat group delay and optimum-amplitude characteristics is
described. The design utilizes either single- or dual-mode wave-
guide cavities. Experimental results for a 40-MHz-bandwidth
filter centered at 4 GHz show excellent agreement with theory.

INTRODUCTION

IGH-QUALITY microwave communications system

applications require narrow-bandpass filters pos-
sessing good frequency selectivity, linear phase, and
small in-band insertion loss. Normally, minimum-phase
direct~coupled resonator filters [1] followed by group
delay equalizers [2] (phase correctors) are employed.
Although direct-coupled resonator filters are relatively
simple structures, their insertion loss functions are
restricted to all-pole functions (e.g., Butterworth or
Chebyshev). Recently, it was shown [3] that optimum-
amplitude waveguide bandpass filters whose insertion loss
functions have ripples in the passband and real finite
zeros of transmission in the stopband can be constructed
by using dual-mode multiple coupled cavities. Neverthe-
less, these filters still require separate group delay
equalizers. -

Since it is known that cascading a nonminimum-phase
network with an all-pass network results in a network
of a higher degree than is actually necessary [4], the
direct realization of a general nonminimum-phase transfer
function would offer considerable advantages.

This paper presents practical waveguide filter structures
capable of producing an optimum response. The ap-
proximation problem is not tackled, since, from the
practical point of view, existing analytical solutions
[4]-[6] or numerical procedures [7] can be efficiently
used to generate solutions on a digital computer. It is
demonstrated that the most general form of bandpass
transfer functions of symmetrical networks can be realized
in either single- or dual-mode coupled-waveguide cavities.
The theory is applied to the realization of a twelfth-
order nonminimum-phase and optimum-amplitude trans-
fer function in a square-cavity dual-mode waveguide
structure. The experimental results included are shown
to agree closely with theory. Finally, the response of

Manuscript received May 14, 1973; revised October 22, 1973.

his paper is based upon work performed in COMSAT Laboratories
under the sponsorship of the International Telecommunications
Satellite Organization (INTELSAT). Views expressed are not
necessarily those of INTELSAT.

The authors are with the Transponders Department, RF Trans-
mi;sion Laboratory, COMSAT Laboratories, Clarksburg, Md.
20734,

this filter is compared with that of a twelfth-order Cheby-
shev filter, an augmented linear phase filter, and an
arbitrarily prescribed phase filter with monotonic stop-
band response. '

THEORY

Fig. 1 shows an equivalent circuit of n narrow-band
synchronously tuned cavities coupled in an arbitrary
fashion. The couplings M;; between the sth and jth
cavities are assumed to be frequency invariant, which
is a valid assumption for narrow bandwidths. The circuit
is completely described by the coupling matrix M, which
is a real n X n symmetrical zero-diagonal matrix whose
(2,7) entry is the value of coupling M ;;, When this circuit
is considered as a 2-port resistively terminated at the
output port by the load R, and driven at the input port
by a source of open-circuit voltage E and internal re-
sistance R,, it can be shown [8] that the normalized
low-pass voltage insertion loss ratio t(S), defined as

1/2
CH(S) = 2(—2) %2 (1)
can be expressed in the form
P(S)
t(S) = ’
(9 = 505, @)
where
¢ constant;
P and @' monic polynomials in S;
deg P < deg@ — 2
and
s=jx='(ﬁ—@) (3)
()] W,

where wo is the resonant frequency of all the cavities.
Conversely, given ((S) satisfying the aforementioned
condition, and

[t(MPF <1, —o<A<w® (4)

it can be shown that there exists a network of the form
shown in Fig. 1 that possesses this given ().

When even-order symmetrical networks are considered,
a canonical form, shown in Fig. 2, always exists for a
network of order n = 2m. The couplings M 1, 7 =
1,2,...,m — 1, all have the same signs, but the couplings

1Q is a strict Hurwitz polynomial.
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Fig. 2. Canomcal form of equivalent circuit for symmetrical
network of order n = 2m.

My, ©=12++,m, can generally have different
signs. This canonical form can be characterized by a
unique “even-mode” m X m symmetrical-coupling matrix
M., which is tridiagonal with diagonal elements M., ,

M; .41 and off-diagonal elements M., ..., = M; i, for
t = 1,2,++¢,m — 1. The presence of the diagonal-coupling
elements M,,, and the arbitrariness of their signs prevent
the realization of the canonical network shown in Fig. 2
in any of the waveguide structures preVlously described
[17, [6], since these can generate only couplings of the
same sign. On the other hand, the waveguide structure
[9] shown in Fig. 3 is a general realization of the canonical
form of the equivalent circuit shown in Fig. 2. Each of
the rectangular-waveguide cavities in Fig. 3 supports
only its fundamental TE;; mode and resonates at a com-
mon center frequency. The difference between this
structure and that in [6] is the method used to couple
the two symmetrical halves of the network. In Fig. 3,
the two halves are coupled via their .common broadwall
in the z— plane. Any of the diagonal elements of the
even-mode coupling matrix can be realized either by a
circular hole in the center of the common wall between
a top and a bottom cavity (electric field coupling) or by
a narrow slot at the edge of the cavity (magnetic field
coupling). The couplings produced by these two methods
have opposite signs; hence, any arbitrary pattern of
signs of the symmetrical canonical form can be realized.
The canonical form reahzatlon has been expenmentally
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Flg 3. Waveguide structure that realizes canonical form of sym-
‘metrieal network.

verified by using a sixth-order elliptic response. Measured
and computed results for this filter, together with the
coupling matrix, are shown in Fig. 4.

Although the structure of Fig. 3 is quite general, a
simpler mechanical structure can be obtained by using
the dual-mode square—wavegulde cavity geometry [3]
shown in Fig. 5. In general, the canonical form of the
even-mode coupling matrix may not be realizable in the
square-waveguide dual-mode structure, since in this
structure the signs of diagonal elements of the even-mode
coupling matrix are fixed @ priors according to the rule
sgn [Meuj = 8gn I:Meli],. 1= 4k7 4k + 1

= —sgn[Mn], i=4k—24k—1
where k = 1,2,++-,m/2.

This rule of signs can be deduced from simple con-
sideration of the field configurations of orthogonal TE,y
modes in the square-waveguide cavities at the positions
of eoupling slots and screws. However, .in addition to
the tridiagonal elements of M,, the elements M, .3,
t=2k —~1, k= 12,-.-,m, are nonzero; consequently, a

(5)
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Tig. 4. Measured and computed response of sixth-order canonical elliptic waveguide filter.

n

END CAVITIES
n={4m—2)

‘:.2.3\\
3

{TYPICAL)

END CAVITIES
FOR n=4m,
m=1,23

rd %+ 1
¢ -
/
/
~. e .'zh 2
-~ / v
ne3 , POLARIZATION OF Téy) MODE
g
x

Fig. 5. Square-waveguide dual-mode cavity structure. Arrows
indicate electric field direction.

large (possibly infinite) number of equivalent (ortho-
gonally similar) even-mode coupling matrices that possess
the desired diagonal pattern of signs may be generated.
Methods of obtaining some of these solutions have been
considered in [8]. Because there are a large number of
solutions, an added advantage of the orthogonal-mode
realization is that the designer can choose those solutions
that are less sensitive to parameter changes and/or
those element values that are more practically realizable.

TRANSFER FUNCTION AND FILTER
REALIZATION

The cancnical single-mode form of Fig. 3 and the
orthogonal dual-mode square-waveguide structure of
Fig. 5 can realize any arbitrary transfer function of order
n = 2m if it satisfies the conditions given in the last
section and is realizable by a symmetrical network.
Known types of waveguide filter response that can be
realized in these structures are the foliowing.

1) Butterworth or Chebyshev filters with nonoptimum
amplitude and group delay:

P(S) =1 ¢=1 (6)

2) Filters with optimum elliptic Cauer-type amplitude
responses and nonoptimum group delay:

k

P(8) = I1 (8 + 82,

Te]

E<m—1 (7)

where the S; are real.

3) Filters with linear phase [6]. In this case, P(S) is
a polynomial of degree n — 2 with no purely imaginary
zeros; i.e., these filters possess optimum group delay and
a monotonic stopband amplitude response.

In cases a and b, the transfer functions are minimum-
phase-type transfer functions; hence, their amplitude and
phase (group delay) characteristics are uniquely related
by the Hilbert transform [10]. Since in both cases the
functions are specified purely on the basis of their ampli-
tude characteristics, the resulting group delay is by no
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means optimum. On the other hand, case ¢ has a monotonic
stopband amplitude response and hence is known to be
nonoptimum. Therefore, to demonstrate the full potential
of the general waveguide filter structures, a transfer
function that has optimum-amplitude properties and
fiat group delay has been chosen for realization. Numerical
methods have been used to compute such a transfer
function. This paper does not treat the approximation

[ —0.00844 0.95606 0.0
0.95606 0.00251 0.62644
0.0 0.62644 0.03230
0.0 0.0 0.56365
0.0 0.0 0.0

| 00 0.0 0.0

while a solution applicable to the square-waveguide dual-mode geometry shown in Fig. 5 is

—0.00844 0.89113 0.0

0.89113 0.07692 0.45077
0.0 0.45077 0.27581
0.34632 0.0 0.44101

0.0 0.0 0.0

0.0 0.0 0.3222

b

problem, but instead concentrates on the physical wave-
guide realization.

The nonminimum-phase low-pass transfer function
that has been chosen for realization [77] is

cP(8
«s) =% ((S)) (8)
where ¢ = 0.021974270, and
P(8) = 89 4 3.001410013 8% — 1.705287093.S¢
— 0.2680738888* + 0.6025502108?
— 0.302240939 (9)
Q(8) = 8® 4 2.602848" 4 6.251458'° 4+ 9.483377.5°

+ 12.28017.8% 4 12.1945887 4 10.08583 8¢
+ 6.606558° + 3.463165* + 1.38002:53
+ 0.39859.82 4 0.073918 + 0.00665. (10)

The computed insertion loss, return loss, and group
delay response of a normalized I1-percent-bandwidth
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filter having this low-pass transfer function are shown in
Fig. 6. The response has a high amplitude selectivity
and its group delay is flat (within less than ol-ns
variation) over 80 percent of the bandwidth.

The synthesis method described in [8] can be used to
evaluate a number of solutions for the even-mode coupling
matrix. The canonical form, realizable in the single-mode
waveguide structure shown in Fig. 3, is

0.0 0.0 0.0
0.0 0.0 0.0
0.56365 0.0 0.0
(11)
0.02153  0.54058 0.0
0.54058 —0.18774 —0.51596
0.0 —0.51596 —0.39454 |
0.34632 0.0 00 ]
0.0 0.0 0.0
0.48101 0.0 0.3222
(12)
—0.49013  0.13701 0.0
0.13701 —0.9038 0.32458
0.0 0.32458  0.51527_

This solution was chosen for practical realization since the
dual-mode geometry represents the most simple
mechanical structure.

It is interesting to note that if rows and columns 4 and
6 of the canonical solution are interchanged, then the
diagonal signs will satisfy the dual-mode geometry condi-
tion given by (5). However, this is not a very practical
solution since My and My are 0. The canonical solution
is therefore much more applicable to the single-mode
structure of Fig. 3.

WAVEGUIDE DESIGN AND EXPERIMENTAL
RESULTS

The design of the square-waveguide structure, which
requires determination of the cavity lengths and coupling
slot sizes, follows closely the methods outlined in the
literature [11], [12]. A 40-MHz-bandwidth filter centered
at 4 GHz was construeted and is shown in Fig. 7.

Tuning of the filter was accomplished by extending
Dishal’s [13] procedure to both transmission and return
losses. First, cavities 1, 2, 11, and 12 were tuned with
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Fig. 6. Experimental filter.
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Fig. 7. Normalized equalized ‘ﬁ(}tcﬁr response for l-percent band-
width.

all the other cavities short. ecircuited; then successive
cavities were brought in until the total filter response
shown in Fig. 8 was obtained.

The in-band insertion loss and group delay are shown
in Fig. 9. Theory and experiment are in excellent agree~
ment except for the return loss, which indicates coupling
errors of +2.5 percent. The average realized Q is 7500,
since only parts of the structure are brazed. A fully brazed

filter would yield a @ of at least 10000 and a center
frequency loss of approximately 0.9 dB.

DISCUSSION AND CONCLUSIONS

The 40-MHz 12-pole nonminimum-phase filter centered
at 4 GHz demonstrated a significant improvement in the
utilization efficiency of the 12 electrical cavities when
compared to other known realizations. This is illustrated
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Fig. 10. Comparison of filter responses.

in Fig. 10, where a comparison is made with three other
types of filters.

First, the 12-pole Chebyshev response is less selective
and, for a time-delay specification of 5 ns, the usable
bandwidth is only 37.5 percent. On the other hand, the
12-pole augmented linear phase polynomial exhibits
excellent time-delay properties, but the amplitude selec-
tivity is poor. A

A better compromise between these two responses is
provided by the arbitrary-phase polynomial transfer
function realizable by a structure possessing all positive
couplings. In this case, a useful tradeoff between amplitude
selectivity and time delay is achieved. Such a response
represents the best known waveguide realization that has
previously been employed. However, a comparison with
the nonminimum-phase filter deseribed in this paper
indicates that more stringent specifications can be met
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by a waveguide structure having the same number of
cavities.
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