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Abstract—The syn~esis of narrow-bandpass waveguide filters

having flat group delay and optimum-amplitude characteristics is
described. The design ufllzes either single- or dual-mode wave-
guide cavities. Experhpental results for a 40-MHz-bandwidth

titer ceritered at 4 GHz show excellent agreement with theory.

INTRODUCTION

H IGH-QUALITY microwave communications system

applications require narrow-bandpass filters pos-

sessing good frequency selectivity y, linear phase, and

small in-band insertion loss. Normally, minimum-phase

direct-coupled resonator filters [1] followed by group

delay equalizers [2] (phase correctors) are employed.

Although direchcoupled resonator filters are relatively

simple structures, their insertion loss functions are

restricted to all-pole functions (e.g., Butterworth or

Chebyshev). Recently, it was shown [3] that optimum-

amplitude w“aveguide bandpass filters whose insertion loss

functions have ripples in the passband and real finite

zeros of transmission in the stopband can be constructed

by using dual-mode multiple coupled cavities. Neverthe-

less, these filters still require separate group delay

equalizers.

Since it is known that cascading a nonminimum-phase

network with an all-pass network results in a network

of a higher degree than is actually necessary [4], the

direct realization of a general nonrninimum-phase transfer

function would offer considerable advantages.

This paper presents practical waveguide filter structures

capable of producing an optimum response. The ap-

proximation problem is not tackled, since, from the

practical point of view, existing analytical solutions

[4}[6] or numerical procedures [7] can be efficiently

used to generate solutions on a digital computer. It is

demonstrated that the most general form of bandpass

transfer functions of symmetrical networks can be realized

in either single- or dual-mode coupled-waveguide cavities.

The theory is applied to the realization of a twelfth-

order nonminirn um-phas,e and optimum-amplitude trans:

fer function in a square-cavity dual-mode waveguide

structure. The experimental results included are shown

to agree closely with theory. Finally, the response of
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this filter is compared with that of a twelfth-order Cheby:

shev filter, an augmented linear phase filter, and an

arbitrarily prescribed phase filter with monotonic stop;

band response.

THEORY

Fig. 1 shows an equivalent circuit of n narrow-band

synchronously tuned cavities coupled in an arbitrary

fashion. The couplings Mij between the ith and jth

cavities are assumed to be frequency invariant, which

is a valid assumption for narrow bandwidths. The circuit

is completely described by the coupling matrix M, wh~ich

is a real n X n symmetrical zero-diagonal matrix whose

(i)j) entry is the value of coupling M,j, When this circuit

is considered as a 2-port resistively terminated at the

output port by the load Ra and driven at the input pprt

by a source of open-circuit voltage E and internal re-

sistance RI, it can be shown [8] tha$ the normalized

low-pass voltage insertion loss ratiQ t(S),defined as

()RI 112V2
t(s)=2~ -j-

can be expressed in the form

P(s)

‘(s) = ‘ (i?(s)

where

c constant;

P and Q1 monic polynomials in S;

deg P <deg Q–2

and

()S=jA=j 2–2
Wo (J

(1)

(!2)

(3)

where WO is the resonant frequency of all the cavities.

Conversely, given t(S) satisfying the aforementioned

condition, and

it can be shown that there exists a network of the form

shown in Fig. 1 that possesses this given i(~).

When even-order symmetrical networks are considered,

a canonical form, shown in Fig. 2, always exists far a

network of order n = 2m. The couplings llli, i+l, i =

1,2,..., m — 1, all have the same signs, but the coupfings

1 Q is a strict Hurwitz polynomial.
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Fig. 1. General equivalent circuit of n arbitrarily coupled cavities.

:~~~---’g~m+lIn lH lii lH

$“ h-l I“-* ----- Ll+z il+l

lF IF
— lF IF

\ t >“_,, *2 ‘-M”-,, “= , ‘FM~+2, ~fl
%. II-I

Fig. 2. Canonical form of equivalent circuit for symmetrical
network of order n = 2m.

M~,~_~+l, i = 1,2,.00 ,m, can generally have different

signs. This canonical form can be characterized by a

unique “even-mode” m X m symmetrical-coupling matrix

M., which & tridiagonal with diagonal elements M,c,, =

lh!i,._;+l and off-diagonal elements M.,,,,, = M;,J+l, for
~ = 1,2,”. . .,m — 1. The presence @ the diagonal-coupling

elements Me,, and the arbitrariness of their signs prevent

the realization of the canonical netwo~k shown in Fig. 2

in any of ‘the waveguide structures previously described
[1], [61, since these can generate only couplings of the

same. sign. On the other hand, the waveguide structure

[9] shown in Fig. 3 is a general realization of the canonical

form of the equivalent circuit shown in Fig. 2. Each of

the rectang@ar-waveguide cavities in Fig. 3 supports

only its fundamental TE1O1mode and resonates at a com-

mon center frequency.” The difference between this

structure and that in [6] is, the method used to couple

the two symn’ietrical halves of the network. In Fig. 3,

the two halves are coupled via their common broadwall

in the Z–Z plane. Any of the diagonal elements of the

even-mode coupling matrix can be realized “either by a
circular hole in the center of the common wall between

a top and a bottom cavity (electric field coupling)- or by

a narrow slot at the edge of the cavity (magnetic field

coupling). The couplings produced by these two methods

have opposit~ signs; hence, any arbitrary pattern of

signs of the symmetrical canonical form” can be realized.

The canonical form realization has been experimentally
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Fig. 3. Waveguide structure that realizes canonical form of sym-
metrical pet work.

verified by using a sixth-order elliptic response. Mpasured

and computed results for this filter, together @h the

coupling matrix, are shown in Fig. 4.

Although the structure of Fig, 3 is quite general, a

simpler mechanical etructure can be obtained by using

the dual-mode square-waveguide cavity geometry [3]

shown in Fig. 5. In general, the canonical form of the

even-mode coupling matrix may not be realizable in the

square-w~veguide dual-mode structure, since in this

structure the signs of diagonal elements of the even-mode

coupling matrix are fixed a priori according to the rule

sgn [M.,,] = sgn [M.~i]j’ i=417,4~+’1

—_— sgn [M,lJ, i=4k–2,4k–l (5)

where k = 1,2,. . . ,m/2.

This rule of signs can be deduced from simple con-

sideration of the field configurations of orthogonal TE101

mo’des in the square-waveguide” c&.ities at the positions

of coupling slots and screws. However, in addition to

the tridiagonal elements Of Me, the ele~pnts ‘~, ,;+3,

i:2k-l, k=l,2?,. :. ,m, are nonzero; consequently, a



AT2A AND WILLIAMS: WAVEGUIDE FILTERS 427

0
I I I I

10 0

1
[0.0471 0.9207 00

Me= 0.92072 -0.2468 10.5933
0. 0.5933 0.7687

20

S
~

30
%
~

— THEORY 0=5000

1

10

-WAX. MEAsuRE~

-30 g

%
~

f.= 4000 MHz
~ II

I I
70 I I I I I I I 1 I I
-1oo -80 -60 -40 -20 0 +20 +40 +60 +s0 +100

Af (MHz)

Fig. 4. Measured and computed response of sixth-order canonical elliptic waveguide filter.
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Fig. 5. Square-waveguide dual-mode cavity structure. Arrows
indicate electric field duectlon.

large (possibly infinite) number of equivalent (ortho-

gonally similar) even-mode coupling matrices that possess

the desired diagonal pattern of signs may be generated.
Methods of obtaining some of these solutions have been

considered in [8]. Because there are a large number of

solutions, an added advantage of the orthogonal-mode

realization is that the designer can choose those solutions

that are less sensitive to parameter changes and/or

those element values that are more practically realizable.

TRANSFER. FUNCTION AND FILTER

REALJ.ZATION

The canonical single-mode form of Fig. 3 and the

orthogonal dual-mode square-waveguide structure of

Fig. 5 can realize any arbitrary transfer function of order

n = 2m if it satisfies the conditions given in the last

section and is realizable by a symmetrical network.

Known types of wavaguide filter response that can be

realized in these structures are the following.

1) Butterworth or Chebyshev filters with nonopti]mum

amplitude and group delay:

P(s) = 1 C==l. [6)

2) Filters with optimum elliptic Cauer-type amplitude

responses and nonoptimum group delay:

P(8) = & (s’+ S?), k~m-1 (7)
i-l

where the A’i are real.

3) Filters with linear phase [6]. In this case, P(S) is

a polynomial of degree n — 2 with no purely imaginary

zeros; i.e., these filters possess optimum group dela~~ and

a monotonic stopband amplitude response.
In cases a and b, the transfer functions are minimum-

phase-type transfer functions; hence, their amplitude and

phase (group delay) characteristics are uniquely related
by the Hilbert transform [10]. Since in both cases the

functions are specified purely on the basis of their ampli-

tude characteristics, the resulting group delay is bly no---
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means optimum. On the other hand, case c has a monotonic filter having this low-pass transfer function are shown in

stopband amplitude response and hence is known to be Fig. 6. The response has a high amplitude selectivity

nonoptimum. Therefore, to demonstrate the full potential and its group delay is flat (within less than + l-ns

of the general waveguide filter structures, a transfer variation) over 80 percent of the bandwidth.

function that has optimum-amplitude properties and The synthesis method described in [8] can be used to

flat group delay has been chosen for realization. Numerical evaluate a number of solutions for the even-mode coupling

methods have been used to compute such a transfer matrix. The canonical form, realizable in the single-mode

function. This paper does not treat the approximation waveguide st~cture shown in Fig. 3, is

–0.00844 0.95606 0.0 0.0 0.0 0.0

0.95606 0.00251 0.62644 0.0 0.0 0.0

0.0 0.62644 0.03230 0.56365 0.0 0.0

0.0 0.0 0.56365 0.02153 0.54058 0.0

0.0 0.0 0.0 0.54058 –0.18774 –0.51596

0.0 0.0 0.0 0.0 –0.51596 –0.39454,

while a solution applicable to the square-waveguide dual-mode geometry shown in Fig. 5 is

[

–0.00844 0.89113 0.0 0.34632 0.0 0.0

0.89113 0.07692 0.45077 0.0 0,0 0.0

0.0 0.45077 0.27581 0.48101 0.0 0.3222

0.34632 0.0 0.44101 –0.49013 0.13701 0.0

[

0.0 0.0 0.0

0.0 0.0 0.3222

problem, but instead concentrates on the physical wave-

guide realization.

The nonminimum-phase low-pass transfer function

that has been chosen for realization [7] is

CP(8)

‘(s) = Q(s)
(8)

where c = 0,021974270, and

P(S) = h’10+ 3.001410013S8 – 1.7052870938’

– 0.268073888ii14 + 0.60255021082

– 0.302240939 (9)

Q(S) = S’2 + 2.60284S” + 6.25145S’0 + 9.483377S’

+ 12.28017S8 + 12.19458S7 + 10.08583S’

+ 6.60655S5 + 3.46316S4 + 1.38002S8

+ 0.398,59S2 + 0.07391S + 0.00665. (lo)

The computed insertion loss, return loss, and group

delay response of a normalized l-percent-bandwidth

0.13701 –0.9038 0.3245$

0.0 0.32458 0.5152i

(11)

(12)

This solution was chosen for practical realization since the

dual-mode geometry represents the most simple

mechanical structure.

It is interesting to note that if rows and columns 4 and

6 of the canonical solution are interchanged, then the

diagonal signs will satisfy the dual-mode geometry condi-

tion given by (5). However, this is not a very practical

solution since il!.fli and M84 are O. The canonical solution

is therefore much more applicable to the single-mode

structure of Fig. 3.

WAVE GUIDE DESIGN AND EXPERIMENTAL

RESULTS

The design of the square-waveguide structure, which

requires determination of the cavity lengths and coupling

slot sizes, follows closely the methods outlined in the
literature [11], [12]. A 40-MHz-bandwidth filter centered

at 4 GHz was constructed and is shown in Fig. 7.

Tuning of the filter was accomplished by extending

Dishal’s [13] procedure to both transmission and return

losses. First, cavities 1, 2, 11, and 12 were tuned with
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Fig. 6. Experimental falter.
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Fig. 7. Normalized equalized filter response for l-percent band-

width.

all the other cavities short circuited; then successive filter would yield a ~ of at least 10000 and a center
cavities were brought in until the total filter response frequency loss of approximately 0.9 dB.
shown in Fig. 8 was obtained.

The in-band insertion loss and group delay are shown DISCUSSION AND CONCLUSIONS

in Fig. 9. Theory and experiment are in excellent agree- The 40-MHz 12-pole nonminimum-phase filter centered
ment except for the return loss, which indicates coupling at 4 GHz demonstrated a significant improvement in the
errors of *2.5 percent. The average realized Q is 7500, utilization efficiency of the 12 electrical cavities wlhen
since only parts of the structure are brazed. A fully brazed compared to other known realizations. This is illustrated
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Fig. 8. Trzmsmtilon and return loss responses of complete filter.
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Fig. 10. Comparison of falter responses.

in Fig. 10, where a comparison is made with three other

types of filters.

First, the 12-pole Chebyshev response is less selective

and, for a time-delay specification of 5 ns, the usable

bandwidth is ~nly 37.5 percent. On the other hand, the

12-pole augmented linear phase polynomial exhibits

excellent time-delay properties, but the amplitude selec-

tivity is poor.

A better compromise between these two responses is

provided by the arbitrary-phase polynomial transfer

function realizable by a structure possessing all positive

couplings. In this case, a useful tradeoff between amplitude

selectivity and time delay is achieved. Such a response

represents the best known waveguide realization that has

previoudy been employed. However, a comparison with

the nonminimum-phase filter described in this paper

indicates that more stringent specifications cgm be met

by a waveguide structure having the same number of

cavities.

ACKNOWLEDGMENT

The authors wish to thank L. Pollack, A. Berman, and

W. Getsinger for their encouragement in developing the

types of filters described, and R. Kessler for arranging

for the construction of the experimental filter,

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[131

S. B. Cohn, “Direct-coupled-resonator filters,” Proc. IRE, vol.
45, pp. 187–196, Feb. 1957.
T. A. Abele and H. Wang, “An adjustable narrow band micro-
wave delay equalizer,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-15, pp. 566-574,. oct. 1967.
A. E. Atia and A. E. Wdhams, “Narrow-bandpass waveguide
filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-20,
pp. 258-265, Apr. 1972.
J. D. Rhodes, “A low-pass protot

Qe ‘etWork ‘“r ‘icrowavelinear phase filters,” IEEE Trans. wrowave Theory Tech., vol.
MTT-18, pp. 290-301,.June 1970.
— “Filters approximating ideal amplitude and arbitrary
phas~ characteristics,” IEEE Trans. Circuit Theory, vol.
CT-20, pp. 120-124, Mar. 1973.
— “The generalized direct-coupled cavity linear phaSO
filter’s,” IEEE Trans. Microwave Thwry Tech., vol. MTT-18,
pp. 301-308, June 1970.
K. Wittmtm, G. Pfitzenmaier, and F. Kunemund, “Dimen-
sionierung Reflexionsfaktor und Lauf zeitgeebneter Versteila~ter
Filter mit Uberbouckungen,” Frequenz, vol. 24,, pp. 307-312,
O.k 1Q71’)-v----.-.
A. E,. Atia and A. E. Wdliams, “New types of waveguide band-
pass filters for satellite transponders,” COMLSA T Tech. li!ev.,
vol. 1, pp. 21-43, Fall 1971.
A. E. Williams and A: E. Atia, “Two port synthesis of narrow
~~icou led cavities,”

/!alif.), Apr. 1972, pp. 67-?’0.
in Proc. Znt. Filter fJymp. (Santa

~g5%uiiiman, Synthesis of hnsar Networks. New York: Wiley,

Matthaei et al., Microwave I’iltem, Impedance Matching iVet-
works and Coupling Structures, New York: McGraw-Hill,
1965.
S. B. Cohn, “Microwave coupling by large apertures,” Froc.
IRE, vol. 40, pp. 696-699, June 1952.
M. Dishal, “Alignment and adjustment of synchronously tuned
multiple-resonant-circuit filters,” Proc. IRE, VO1. 39, pp.
1448-1455, Nov. 1951,


